Workflows for Sweet Spots Identification in Shale Plays Using Seismic Inversion and Well Logs

نویسنده

  • Yexin Liu
چکیده

Worldwide interest in shale plays has rapidly increased in recently years, thanks to the combination of horizontal drilling and hydraulic fracturing. Shale formations act as both the source and the reservoir for the natural gas and usually exhibit anisotropic properties at larger scale. Geological and petropysical studies found that the right combination of thickness, TOC (total organic carbon), maturity, porosity, high gas-in-place and fracability are important for shale plays sweet spots identification. Usually integration of the petrophysical well logs and geological core analysis can easily help to calculate these important elements around the borehole. For example, the Passey equation (Passey, 1990) can be used to estimate TOC, and dipole sonic data can be utilized to optimize the hydraulic fracturing and to measure the formation anisotropic parameters (Horne et al., 2012). Anisotropy plays a key role in the shale gas sweet spots evaluation. Seismic data, especially the wide-azimuth seismic angle gathers, offer valuable information for this shale sweet spots identification. However, special technologies and workflows are required to infer the meaningful properties, such as TOC, anisotropic epsilon and delta parameters, and in-situ stress, from the seismic data and then calibrated with both borehole data and geological understandings. Four major categories will be studied in the paper: 1) petrophysical model for shale gas evaluation; 2) seismic anisotropic inversion to simultaneously estimate the anisotropic epsilon, delta and gamma ( in addition to compressional velocity (Vp), shear velocity (Vs) and density; 3) seismic TOC inversion; 4) geomechanical properties calculation and interpretation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rock physics characterization of shale reservoirs: a case study

Unconventional resources are typically very complex to model, and the production from this type of reservoirs is influenced by such complexity in their microstructure. This microstructure complexity is normally reflected in their geophysical response, and makes them more difficult to interpret. Rock physics play an important role to resolve such complexity by integrating different subsurface di...

متن کامل

Joint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis

Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior informat...

متن کامل

Delineating Hydrocarbon Bearing Zones Using Elastic Impedance Inversion: A Persian Gulf Example

Reservoir characterization plays an important role in different parts of an industrial project. The results from a reservoir characterization study give insight into rock and fluid properties which can optimize the choice of drilling locations and reduce risk and uncertainty. Delineating hydrocarbon bearing zones within a reservoir is the main objective of any seismic reservoir characterization...

متن کامل

Estimation of Total Organic Carbon from well logs and seismic sections via neural network and ant colony optimization approach: a case study from the Mansuri oil field, SW Iran

In this paper, 2D seismic data and petrophysical logs of the Pabdeh Formation from four wells of the Mansuri oil field are utilized. ΔLog R method was used to generate a continuous TOC log from petrophysical data. The calculated TOC values by ΔLog R method, used for a multi-attribute seismic analysis. In this study, seismic inversion was performed based on neural networks algorithm and the resu...

متن کامل

A new stochastic 3D seismic inversion using direct sequential simulation and co-simulation in a genetic algorithm framework

Stochastic seismic inversion is a family of inversion algorithms in which the inverse solution was carried out using geostatistical simulation. In this work, a new 3D stochastic seismic inversion was developed in the MATLAB programming software. The proposed inversion algorithm is an iterative procedure that uses the principle of cross-over genetic algorithms as the global optimization techniqu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013